A simple digital readout circuit for differential resistive or capacitive sensors

Author:

Hidalgo-López José AntonioORCID

Abstract

Abstract This paper introduces and analyzes a novel direct interface circuit (DIC) that directly connects differential resistive and capacitive sensors to digital processors (DPs), performing a magnitude-to-time-to-digital conversion of the information they provide. The simple circuit performs the readout using two passive components, the differential sensor and the DP. In some cases, the circuit may require an additional passive element. The DP only uses common digital resources such as bidirectional pins or a counter, meaning microcontrollers, FPGAs, or ASICs could all be used as DPs. Different DICs proposed in the literature for reading differential sensors require three time measurement processes to estimate the variable to be measured. The new circuit requires only one, saving time and energy dissipation and reducing the number of error sources. A design based on an FPGA has been implemented as a proof of concept. Measurement times in the order of 1.1–1.3 ms have been obtained with this configuration. Errors in the readout of a differential resistive sensor are below 0.34% in the worst case and below 0.63% for a differential capacitive sensor.

Funder

Spanish Government

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3