A minimum entropy criterion for distribution selection for measurement uncertainty analysis

Author:

Huang HeningORCID

Abstract

Abstract This paper presents a minimum entropy criterion for selecting the best probability distribution among a set of candidate distributions based on available information for measurement uncertainty analysis. We consider two cases that are most commonly encountered in practice: A and B. In Case A, the available information is a series of observations. In Case B, the available information is the maximum permissible error according to manufacturer’s specification. Three candidate distributions are considered in Case A: the scaled and shifted z-distribution (i.e. normal distribution), the scaled and shifted t-distribution, and the Laplace distribution. Five candidate distributions are considered in Case B: rectangular, triangular, quadratic, raised cosine, and half-cosine. According to the proposed minimum entropy criterion, the scaled and shifted z-distribution is the best distribution in Case A, and the raised cosine distribution is the best distribution in Case B. A case study is presented to demonstrate the effectiveness of the proposed minimum entropy criterion.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference41 articles.

1. Limitations of the Welch-Satterthwaite approximation for measurement uncertainty calculations;Ballico;Metrologia,2000

2. Distributions for uncertainty analysis;Castrup,2001

3. Selecting and applying error distributions in uncertainty analysis;Castrup,2004

4. Assigning probability density functions in a context of information shortage;Cordero;Metrologia,2004

5. Probability, propensity and probability of propensities (and of probabilities);D’ Agostini;AIP Conf. Proc.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3