2DLIW-SLAM:2D LiDAR-inertial-wheel odometry with real-time loop closure

Author:

Zhang BinORCID,Peng ZexinORCID,Zeng BiORCID,Lu JunjieORCID

Abstract

Abstract Due to budgetary constraints, indoor navigation typically employs two-dimensional (2D) LiDAR rather than 3D LiDAR. However, the utilization of 2D LiDAR in simultaneous localization and mapping (SLAM) frequently encounters challenges related to motion degeneracy, particularly in geometrically similar environments. To address this problem, this paper proposes a robust, accurate, and multi-sensor-fused 2D LiDAR SLAM system specifically designed for indoor mobile robots. To commence, the original LiDAR data undergoes meticulous processing through point and line extraction. Leveraging the distinctive characteristics of indoor environments, line–line constraints are established to complement other sensor data effectively, thereby augmenting the overall robustness and precision of the system. Concurrently, a tightly-coupled front-end is created, integrating data from the 2D LiDAR, inertial measurement unit, and wheel odometry, thus enabling real-time state estimation. Building upon this solid foundation, a novel global feature point matching-based loop closure detection algorithm is proposed. This algorithm proves highly effective in mitigating front-end accumulated errors and ultimately constructs a globally consistent map. The experimental results indicate that our system fully meets real-time requirements. When compared to cartographer, our system not only exhibits lower trajectory errors but also demonstrates stronger robustness, particularly in degeneracy problem. We open source our methods here: https://github.com/LittleDang/2DLIW-SLAM.

Funder

the Key technology project of Shunde District

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference36 articles.

1. Review of SLAM Algorithms for Indoor Mobile Robot with LIDAR and RGB-D Camera Technology;Kolhatkar,2021

2. Real-time loop closure in 2D LIDAR SLAM;Hess,2016

3. FAST-LIo: a fast, robust LiDAR-inertial odometry package by tightly-couplediterated Kalman filter;Xu;IEEE J. Robot. Autom. Lett.,2021

4. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping;Shan,2020

5. Fusion of binocular vision, 2D lidar and IMU for outdoor localization and indoor planar mapping;Liu;Meas. Sci. Technol.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3