Metered reagent injection into microfluidic continuous flow sampling for conductimetric ocean dissolved inorganic carbon sensing

Author:

Tweedie MarkORCID,Macquart Antonin,Almeida Joao,Ward Brian,Maguire Paul

Abstract

Abstract Continuous autonomous measurement of total dissolved inorganic carbon (TCO2) in the oceans is critical for climate change modelling and ocean acidification measurement. A microfluidic conductivity-based approach will permit integration of miniaturised chemical analysis systems into Argo ocean floats, for long-term, high-accuracy depth profiling of dissolved CO2 with minimal reagent payload. Precise metering, suitable for sample acidification and CO2 liberation, is addressed. Laser etched microfluidic snake channel restrictors and asymmetric Y-meters were fabricated, with channel dimensions down to ∼75 μm, to adjust metering ratios between seawater and acid simulants. Hydrodynamic resistances, from flow versus pressure measurements, were compared with finite element simulations for various cross-section profiles and areas. Microfluidic metering circuits were constructed from various resistance snake channels and Y-junction components. Sample to acid volume ratios (meter ratio) up to 100:1 have been achieved with 300 μm wide snake channels for lengths >m. At highest resolution, the footprint would be >600 mm2. Circuits based solely on asymmetric Y-junctions gave maximum meter ratios of 16:1 with a footprint of <40 mm2 and ∼0.2% precision. Further refinement is required to ensure the integrity of such small channels in integration of metering units into full TCO2 analysis microfluidic circuits.

Funder

The Department of Employment and Learning, N. Ireland

Invest N. Ireland

National Science Foundation

Science Foundation Ireland

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3