Alignment subdomain-based deep convolutional transfer learning for machinery fault diagnosis under different working conditions

Author:

Li Yibing,Wan Hu,Jiang Li

Abstract

Abstract In recent years, transfer learning (TL) methods have been extensively used in machinery fault diagnosis under different working conditions. However, most of these TL methods perform poorly in the actual industrial applications, due to the fact that they mainly focus on the global distribution of different domains without considering the distribution of subdomains belonging to the same category in different domains. Therefore, we propose an alignment subdomain-based deep convolutional transfer learning (AS-DCTL) network for machinery fault diagnosis. First, continuous wavelet transform is used to transform the original vibration signal into a 2D time-frequency image. Then, AS-DCTL uses a convolutional neural network as the feature extractor to extract the features of the source and target domain samples and introduces maximum mean difference (MMD) to align the global distribution of the extracted features. Simultaneously, we use local MMD as a metric criterion to align the distribution of related subdomains, by adding weights to similar samples in the source domain and target domain. The experimental results of the two case studies show that the proposed AS-DCTL network can achieve higher recognition accuracy and classification effect, in comparison with the current mainstream TL methods.

Funder

Fundamental Research Funds for Hubei Province Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3