Robust sequential adaptive Kalman filter algorithm for ultrashort baseline underwater acoustic positioning

Author:

Yang Fanlin,Zhang XiaofeiORCID,Sui HaichenORCID,Xin Mingzhen,Luo Yu,Shi Bo

Abstract

Abstract Affected by dynamic changes in the complex marine environment, ultrashort baseline (USBL) systems may exhibit continuous gross errors in underwater target positioning, resulting in the distortion of the target coordinates. To effectively detect and eliminate continuous gross errors in USBL underwater acoustic positioning, a robust sequential adaptive Kalman filter (RSAKF) algorithm is proposed in this paper. The RSAKF algorithm employs sequential filtering to decompose all measurement updates into multiple submeasurement updates and uses the fading memory weighted average method to estimate the one-step prediction mean square error of the metrics for each submeasurement update. Then, the RSAKF algorithm adopts an adaptive correction method of submeasurement noise variance, which eliminates the influence of continuous gross errors through a more targeted adaptive correction of each submeasurement noise variance. The effectiveness of the algorithm was quantitatively analyzed using a USBL positioning simulation experiment, and the results showed that the continuous gross errors rejection rate of the RSAKF algorithm reached 84.12%. The point error of the RSAKF algorithm is improved by 62.65%, 46.76%, 36.09%, and 26.48% compared with the Kalman filter (KF), KF based on Huber, KF based on Institute of Geodesy and Geophysics, and the maximum correntropy KF, respectively. The USBL positioning remotely operated vehicle experiment was conducted in the South China Sea, and the results showed that the RSAKF has the best filtering accuracy. Simulation and actual measurement experiments verified that the RSAKF algorithm can effectively eliminate the influence of continuous gross errors.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3