Weighted kurtosis-based VMD and improved frequency-weighted energy operator low-speed bearing-fault diagnosis

Author:

Song XueweiORCID,Wang Hongfeng,Chen Peng

Abstract

Abstract The diagnosis of low-speed bearing faults remains a challenging issue because background noise is often present and the impulse signal is prone to being masked. In this paper, we propose a low-speed bearing-fault diagnosis method using weighted-kurtosis variational-mode decomposition and an improved frequency-weighted energy operator (IFWEO). First, the raw signal is decomposed using VMD, and WK is employed to select the optimum intrinsic mode function to reconstruct the signal. The reconstructed signal carries abundant fault information. Second, a third-order cumulant method is introduced to improve the FWEO, and this method is able to strengthen the signal impulse and enhance the fault features. The IFWEO is able to effectively reduce the effects of noise. Third, the effectiveness of the proposed method is validated by simulation and engineering experiments, and the results show that the method presented here is able to accurately diagnose low-speed bearing faults.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3