Spatio-temporal features based deep learning model for depression detection using two electrodes

Author:

Choudhary ShubhamORCID,Kumar Bajpai ManishORCID,Kumari Bharti KusumORCID

Abstract

Abstract Deep learning has made significant contributions to the medical field and has shown great potential in various applications. Its ability to process vast amounts of data and extraction of patterns has enabled breakthroughs in medical research, diagnosis and treatment. The application of deep learning plays a vital role in depression detection. Depression is a neurological disorder characterized by persistent feelings of sadness, hopelessness and a lack of interest. The prevalence of depression is a significant factor contributing to the rise in suicide cases on a global scale. The electroencephalogram (EEG) is a non-invasive technique used to detect depression. It records brain activity using multiple electrodes. The number of EEG electrodes used for measurement directly affects the instrumentation and measurement complexity of the experiment. The present manuscript proposes a deep learning model for depression detection, focusing on two electrodes named FP1 and FP2. The purpose of employing two electrodes is to enhance the system’s portability while reducing data acquisition time and system cost. EEG is spatio-temporal data and possesses inherent spatial and temporal features. The present manuscript proposes a methodology for extracting temporal and spatial features. The temporal feature extraction module extracts temporal features in the time domain and the spatial module extracts spatial features in the spatial domain. This manuscript presents a study on the applicability of two electrodes for depression detection. This research can enhance accessibility, user-friendliness and easier data collection and analysis. The proposed deep learning model is evaluated on two benchmark datasets. It achieves 93.41% classification accuracy, 92.54% precision, 93.23% recall, 93.06% F1 score and 97.80% area under the curve (AUC) for Hospital University Sains Malaysia dataset and for Multi-modal Open Dataset for Mental-disorder Analysis dataset it achieves 79.40% accuracy, 81.18% precision, 67.73% recall, 73.80% F1 score and 85.66% AUC.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3