An EEG-based systematic explainable detection framework for probing and localizing abnormal patterns in Alzheimer’s disease

Author:

Song ZhenxiORCID,Deng Bin,Wang JiangORCID,Yi GuoshengORCID

Abstract

Abstract Objective. Electroencephalography (EEG) is a potential source of downstream biomarkers for the early diagnosis of Alzheimer’s disease (AD) due to its low-cost, noninvasive, and portable advantages. Accurately detecting AD-induced patterns from EEG signals is essential for understanding AD-related neurodegeneration at the EEG level and further evaluating the risk of AD at an early stage. This paper proposes a deep learning-based, functional explanatory framework that probes AD abnormalities from short-sequence EEG data. Approach. The framework is a learning-based automatic detection system consisting of three encoding pathways that analyze EEG signals in frequency, complexity, and synchronous domains. We integrated the proposed EEG descriptors with the neural network components into one learning system to detect AD patterns. A transfer learning-based model was used to learn the deep representations, and a modified generative adversarial module was attached to the model to overcome feature sparsity. Furthermore, we utilized activation mapping to obtain the AD-related neurodegeneration at brain rhythm, dynamic complexity, and functional connectivity levels. Main results. The proposed framework can accurately (100%) detect AD patterns based on our raw EEG recordings without delicate preprocessing. Meanwhile, the system indicates that (a) the power of different brain rhythms exhibits abnormal in the frontal lobes of AD patients, and such abnormality spreads to central lobes in the alpha and beta rhythms, (b) the difference in nonlinear complexity varies with the temporal scales, and (c) all the connections of pair-wise brain regions except bilateral temporal connectivity are weak in AD patterns. The proposed method outperforms other related methods in detection performance. Significance. We provide a new method for revealing abnormalities and corresponding localizations in different feature domains of EEG from AD patients. This study is a significant foundation for our future work on identifying individuals at high risk of AD at an early stage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3