Parallel-beams magnetic actuator for in-situ transmission electron microscope observation of mechanical testing

Author:

Denoual MatthieuORCID,Lobato-Dauzier Nicolas,Saluden Luis,Sato TakaakiORCID,Jalabert Laurent,Fujita Hiroyuki

Abstract

Abstract Understanding the microscopic mechanisms behind mechanical fractures is essential for enhancing material properties and increasing reliability through fatigue suppression. Conventional mechanical testing methods, such as indentation tests that press a sharp needle into a specimen or tensile tests using hydraulic pumps, are unable to capture nanoscale deformations under applied forces. As a result, the microscopic mechanisms that influence mechanical properties are often inferred indirectly, and material design largely depends on the engineer’s intuition and occasional serendipity. To overcome these challenges, in-situ observation techniques utilizing transmission electron microscopes (TEMs) have been developed to enable the observation of sample deformations at the nanoscale. However, despite their high resolution, conventional TEMs are limited by a small available space -often just a few millimeters- that restricts the application of sufficient force to fracture specimens. Traditional actuation methods, such as thermal expansion, electrostatic force, and piezoelectric actuators, fail to generate significant forces within such confined spaces. In response to these limitations, our research involved the development of a micromachine with multiple parallel beams. This device leverages the Laplace force generated by an electric current passing through the beams and the magnetic field of the TEM. We demonstrated the capability to produce significant force using the magnetic field from the microscope’s magnetic lens. The actuator developed in our study successfully generated forces exceeding 50 µN, marking a significant advancement in the in-situ observation capabilities for mechanical testing.

Funder

KAKENHI

JSPS

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3