Autocorrelation energy and aquila optimizer for MED filtering of sound signal to detect bearing defect in Francis turbine

Author:

Vashishtha GovindORCID,Kumar RajeshORCID

Abstract

Abstract This paper presents a method to detect the bearing defects in Francis turbine by minimal entropy deconvolution (MED) filter making use of a sound signal. As the outputs of MED are mainly influenced by the filter length hence its appropriate selection is very necessary to recover a single random pulse in case of a weak faulty signal. The optimal filter length selection is done by Aquila optimizer adaptively which uses the autocorrelation energy as its fitness function. Experimentation done on defective bearings of Francis turbine suggested that the proposed method exposes periodic impulses effectively in case of a weak faulty signal or when the fault signal is embedded within the noise or interferences from other parts of Francis turbine. The proposed fault identification method has been compared with other models of MED such as particle swarm optimization -MED and maximum correlated kurtosis deconvolution. Results obtained reveals that the proposed method is superior in identifying the faulty signal embedded with heavy noise.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3