Ruthenium-based fast-responding pressure-sensitive paint for measuring small pressure fluctuation in low-speed flow field

Author:

Egami YORCID,Hasegawa A,Matsuda Y,Ikami T,Nagai H

Abstract

Abstract A sprayable fast-responding pressure-sensitive paint (fast-PSP) has been developed to measure time-resolved small pressure fluctuation on model surfaces. To realize PSP with fast response, high robustness, and high luminescence intensity, we have developed a novel ruthenium complex-based fast-PSP. The binder layers of the proposed fast-PSP were prepared by mixing room-temperature-vulcanizing silicone (silicone) and titanium dioxide (TiO2) particles with different sizes and their effects on the properties including the time response, pressure sensitivity, and luminescence intensity were investigated. The effects of the hydrophilic and hydrophobic surface treatments of TiO2 particle on the structure and mechanical robustness of the binder layer were also studied. The developed fast-PSP was applied to the flow field measurements behind a square cylinder and was evaluated. We have succeeded in obtaining time-series data of pressure fluctuation with high accuracy even at a mean velocity of 20 m s−1.

Funder

Precursory Research for Embryonic Science and Technology

Institute of Fluid Science, Tohoku University

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3