Dynamics of a 3-D inlet/isolator measured with fast pressure-sensitive paint

Author:

Bustard Andrew N.,Noftz Mark E.,Hasegawa Mitsugu,Sakaue Hirotaka,Jewell Joseph S.,Bisek Nicholas J.,Juliano Thomas J.

Abstract

AbstractFast pressure-sensitive paint (PSP) was applied to an inlet/isolator designed using the Osculating Internal Waverider Inlet with Parallel Streamlines (OIWPS) method. The dorsal isolator surface pressure was measured using anodized-aluminum PSP through transparent cast acrylic that makes up the ventral portion of the isolator. Temperature-sensitive paint was utilized to correct for the PSP’s temperature sensitivity. The model was tested under Mach 5.7 flow at Re $$=$$ = 8.5 $$\times 10^6$$ × 10 6  /m and 10.2 $$\times 10^6$$ × 10 6  /m in the AFOSR–Notre Dame Large Mach-6 Quiet Tunnel (ANDLM6QT) under conventional noise conditions. Flow phenomena, such as shocks originating in the inlet and flow separation at the throat, were visualized with high spatial resolution. The dynamics measured by the PSP and pressure transducers matched well where the spectral signal-to-noise ratio was above unity. Power spectral densities showed significant frequency content at $$\approx$$ 1 kHz in the shock-wave/boundary-layer interaction (SWBLI) regions. Coherence analysis showed a linear relationship between the unsteady pressures at locations underneath different SWBLI in the isolator, with the exception of the Busemann throat shock. Temporal correlation of shock positions indicated that disturbances propagated downstream at 114% of the core-flow velocity; however, improved calculations of the core-flow velocity are needed to refine this assessment. The surface pressure fields at Re = 8.5 $$\times 10^6$$ × 10 6  /m and 10.2 $$\times 10^6$$ × 10 6  /m were quantitatively very similar, and the results in the ANDLM6QT were qualitatively similar to previous studies in the Boeing/AFOSR Mach-6 Quiet Tunnel under noisy flow.

Funder

United States Air Force Research Laboratory

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3