A bearing fault diagnosis method with an improved residual Unet diffusion model under extreme data imbalance

Author:

Wang HuaqingORCID,Zhang WenboORCID,Han Changkun,Fu Zhenbao,Song LiuyangORCID

Abstract

Abstract As a vital constituent of rotating machinery, rolling bearings assume a pivotal function in ensuring the stable operation of equipment. Recently, deep learning (DL)-based methods have been able to diagnose bearing faults accurately. However, in practical applications, the severe data imbalance caused by the limited availability of fault data compared to the abundance of healthy data poses challenges to the effective training of DL models, leading to a decrease in diagnostic accuracy. In this paper, a bearing fault diagnosis method with the improved residual Unet diffusion model (IResUnet-DM) based on a data generation strategy is proposed to solve the extreme data imbalance. Initially, a deep feature extraction network named improved residual Unet is built, which effectively enhances the information learning ability from vibration signals of the Unet network by one-dimensional residual block and self-attention block. Furthermore, the IResUnet-DM is constructed, which generates vibration signals under extreme data imbalance based on a probability model. The variational bound on the negative log-likelihood of the distribution of generated data was optimized to make the generated data similar to the real data distribution. Finally, wide deep convolutional neural network and one-dimensional ResNet classification networks were used for fault identification to verify the validity and generalization of the IResUnet-DM. Experiment results at different data imbalance rates on two bearing datasets demonstrate that the proposed method can effectively improve fault diagnosis accuracy under extreme data imbalances and outperform the comparison method.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3