Multistate fault diagnosis strategy for bearings based on an improved convolutional sparse coding with priori periodic filter group
Author:
Publisher
Elsevier BV
Subject
Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Signal Processing,Control and Systems Engineering
Reference41 articles.
1. A survey of modeling for prognosis and health management of industrial equipment;Yucesan;Adv. Eng. Inform.,2021
2. Bearing fault diagnosis via generalized logarithm sparse regularization;Zhang;Mech. Syst. Signal Process.,2022
3. Bearing multi-fault diagnosis with iterative generalized demodulation guided by enhanced rotational frequency matching under time-varying speed conditions;Zhao;ISA Trans.,2022
4. Unknown fault feature extraction of rolling bearings under variable speed conditions based on statistical complexity measures;Wang;Mech. Syst. Signal Process.,2022
5. K. Zhao, H. Jiang, C. Liu, Y. Wang, and K. Zhu, ‘A new data generation approach with modified Wasserstein auto-encoder for rotating machinery fault diagnosis with limited fault data’, Knowl.-Based Syst., vol. 238, p. 107892, Feb. 2022, 10.1016/j.knosys.2021.107892.
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Heterogeneous graph representation-driven multiplex aggregation graph neural network for remaining useful life prediction of bearings;Mechanical Systems and Signal Processing;2024-11
2. Bearing Multifault Impulse Detection Using Spike Period Volatility Factor Spectrogram;IEEE Transactions on Industrial Informatics;2024-09
3. Advancing RUL prediction in mechanical systems: A hybrid deep learning approach utilizing non-full lifecycle data;Advanced Engineering Informatics;2024-08
4. Variance discrepancy representation: A vibration characteristic-guided distribution alignment metric for fault transfer diagnosis;Mechanical Systems and Signal Processing;2024-08
5. A rotating machinery feature enhancement method based on improved symplectic geometry mode component sparsity;Measurement;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3