Abstract
Abstract
In this paper, a method for identifying and decoupling geometric errors of rotation axes using vision measurement is proposed. Based on screw theory and exponential product formula, identification equations of position-dependent geometric errors (PDGEs) and position-independent geometric errors (PIGEs) of the rotation axes are established. The mapping relationships between the error twist and geometric errors are established. The error model provides the coupling mechanism of PDGEs and PIGEs. Furthermore, a progressive decoupling method is proposed to separate PDGEs and PIGEs without additional assumptions. The pose parameters, required for solving the identification equations, are obtained by visual measurement. Then, the error terms of PIGEs and PDGEs are determined. Lastly, the error calibration of the rotation axes is investigated, thus providing an average rotary table orientation error reduction of 28.1% compared to the situation before calibration.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献