A high-precision measurement method for moment of inertia based on torsion pendulum method

Author:

Cui HaichaoORCID,Hong Yanji,Du BaoshengORCID,Han JianhuiORCID,Wang Linyan,Ye Jifei,Wang Diankai

Abstract

Abstract The precise determination of moment of inertia (MOI) holds paramount importance in investigating the rotational dynamics of an object. Based on the torsion pendulum system, a novel high-precision measurement method for MOI is developed by using the constant force in this paper. Firstly, the extreme response characteristics of a torsional pendulum measurement system under a constant force are discussed in detail in this paper, and the relationships between the system damping ratio, natural frequency, MOI and the extremal characteristic points of the system response are determined through the linear regression analysis. By applying the superposition principle, the MOI for the object being measured can be computed. As the performance of the constant force source is the key to ensure the measurement accuracy, this paper develops an electromagnetic force source, which consists of a coil and a permanent magnet, and the electromagnetic force variation law with the relative position of the coil and permanent magnet is investigated by utilizing a high-precision electronic balance, and then the optimal relative position is determined to reduce the impact of the relative position on the electromagnetic force. Furthermore, the high-precision electromagnetic force driving equation at the optimal position is acquired by utilizing the least square method. Finally, this paper develops a novel torsional measurement device for the MOI and successfully achieves high-precise measurement of the MOI for the target object using the proposed measurement method. The measurement experiment for MOI of a target object indicates that the corresponding measurement relative error is 0.297%, thereby confirming the effectiveness and high precision of the proposed measurement approach.

Publisher

IOP Publishing

Reference31 articles.

1. A method for measuring the inertia properties of a rigid body using 3-URU parallel mechanism;Liu;Mech. Syst. Signal Process.,2019

2. Preliminary estimation of airplane moments of inertia using CAD solid modeling;Pegram,2001

3. Momentum model-based minimal parameter identification of a space robot;Naveen;J. Guid. Control Dyn.,2018

4. Comparison of different methods of measuring rigid body inertia by the falling body law;Guo;Mech. Eng.,2005

5. Falling body method of measuring the moment of inertia;Yu;Metrol. Meas. Tech.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3