Domain adaptive networks with limited data for rotating machinery fault diagnosis: a case of study of gears

Author:

Li Xueyi,Yu Tianyu,He Qiushi,Li Daiyou,Xie ZhijieORCID,Kong Xiangwei

Abstract

Abstract Rotating machinery is one of the most common components in the industry. Therefore, timely and accurate fault diagnosis of rotating machinery is essential for the regular operation of equipment. At present, some achievements have been made in rotating machinery fault diagnosis based on a large number of marked fault data. However, most of the machines are in a normal state in actuality. Especially, the machines run under different loads, so it is costly to collect a large number of labeled fault data under different load distributions. To solve rotating machinery fault diagnosis in different load conditions with limited samples, a domain adaptive group convolutional neural network is proposed. Firstly, the least squares generative adversarial networks were used to expand the limited target sample data. By changing the objective function, the two defects of the low quality of the vibration signal generated by the traditional generative adversarial networks and the unstable training process are optimized. Secondly, the raw vibration signals in the source domain are pre-trained by the group convolutional neural network, and the group training network effectively reduces network parameters. Finally, the source domain signals and target domain signals were trained in domain adversarial networks to diagnose different distributed data in target domains. The proposed method is validated by collecting the raw vibration signals of gears under different loads and different health states, and the effectiveness of the proposed method is proved. Experimental validation shows that the method proposed in this paper achieves an average accuracy improvement of more than 12% compared to other existing methods.

Funder

the Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Northeastern University

the Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3