Enhancement of PIV measurements via physics-informed neural networks

Author:

Hasanuzzaman Gazi,Eivazi Hamidreza,Merbold Sebastian,Egbers Christoph,Vinuesa RicardoORCID

Abstract

Abstract Physics-informed neural networks (PINN) are machine-learning methods that have been proved to be very successful and effective for solving governing equations of fluid flow. In this work we develop a robust and efficient model within this framework and apply it to a series of two-dimensional three-component stereo particle-image velocimetry (PIV) datasets, to reconstruct the mean velocity field and correct measurements errors in the data. Within this framework, the PINNs-based model solves the Reynolds-averaged-Navier–Stokes equations for zero-pressure-gradient turbulent boundary layer (ZPGTBL) without a prior assumption and only taking the data at the PIV domain boundaries. The turbulent boundary layer (TBL) data has different flow conditions upstream of the measurement location due to the effect of an applied flow control via uniform blowing. The developed PINN model is very robust, adaptable and independent of the upstream flow conditions due to different rates of wall-normal blowing while predicting the mean velocity quantities simultaneously. Hence, this approach enables improving the mean-flow quantities by reducing errors in the PIV data. For comparison, a similar analysis has been applied to numerical data obtained from a spatially-developing ZPGTBL and an adverse-pressure-gradient TBL over a NACA4412 airfoil geometry. The PINNs-predicted results have less than 1% error in the streamwise velocity and are in excellent agreement with the reference data. This shows that PINNs has potential applicability to shear-driven turbulent flows with different flow histories, which includes experiments and numerical simulations for predicting high-fidelity data.

Funder

H2020 European Research Council

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference31 articles.

1. Aerodynamic effects of uniform blowing and suction on a NACA4412 airfoil;Atzori;Flow Turbul. Combust.,2020

2. Uniform blowing and suction applied to nonuniform adverse-pressure-gradient wing boundary layers;Atzori;Phys. Rev. Fluids,2021

3. Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations;Eivazi,2021

4. Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations;Eivazi;Phys. Fluids,2022

5. Physics-informed deep-learning applications to experimental fluid mechanics;Eivazi,2022

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3