Network lightweight method based on knowledge distillation is applied to RV reducer fault diagnosis

Author:

He FeifeiORCID,Liu Chang,Wang Mengdi,Yang Enshan,Liu Xiaoqin

Abstract

Abstract As a core component of industrial robots, the RV reducer directly affects the normal operation of the robot, so it is of great significance to monitor its status and diagnose faults. In the field of fault diagnosis, intelligent diagnosis methods based on deep learning have shown great advantages in accuracy and efficiency. However, as the network depth and scale increase, the exponentially growing model computation and parameter amounts require higher hardware requirements for computers, making it difficult to deploy on embedded platforms with limited computing resources. This makes it difficult for deep learning-based fault diagnosis methods to be applied in practical industrial settings that emphasize real-time performance, portability, and accuracy. This paper proposes a network lightweight method based on knowledge distillation (KD). Using the two-dimensional time–frequency map of vibration signals as the model input, the improved MobileNet-V3 network is used as the teacher network, and the simplified convolutional neural network is used as the student network (SN). The method of KD is applied to condense the knowledge and transfer it to the SN. The proposed method is validated using an RV reducer fault simulation experiment platform, and the results show that the proposed method reduces computation and parameter amounts by about 170 times at an accuracy rate of 94.37%, and run time is shortened by nearly one-third, and a generalization verification was conducted using the rotating mechanical fault simulation experiment platform. The models were also deployed on embedded devices to verify that the method proposed in this paper effectively reduces the deep learning network model’s demand for hardware resources of the operating environment. This provides an effective reference for deploying and implementing deep learning-based fault diagnosis on embedded systems with lower hardware configurations.

Funder

science and technology major project of Yunnan Province

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3