Analysis of mixed lubrication of RV reducer turning arm roller bearing

Author:

Zhang Zhenhua,Wang Jiaxu,Zhou Guangwu,Pei Xin

Abstract

Purpose This paper aims to solve the lubrication failures in the turning arm bearing of RV reducer, give some help in perfecting the bearing structure design and provide theoretical basis for the reducer’s performance improvement. Design/methodology/approach The paper establishes a mixed lubrication analysis model to study performance parameters. According to the discretization of parameters and iteration of equations, numerical simulation and theoretical analysis are achieved in computational process. Findings Considering influences of contact load, real rough surface and realistic geometry of RV reducer turning arm roller bearing, the mixed lubrication analysis model is established to study the ratio of oil film thickness, pressure distribution and maximum von Mises stress in different speeds, temperatures and fillets. The results of mixed lubrication show that reasonable round corner modification, increase in temperature and speed, decrease of surface roughness and lubricant types can improve the lubrication performance. Originality/value The mixed lubrication analysis model is established to study the influences of contact load, real rough surface and realistic geometry of RV reducer turning arm roller bearing. Different speed, temperature, lubricant and fillet modification are also considered in the research to analyze oil film thickness, pressure distribution and maximum von Mises stress. These studies can optimize structural design of bearing and direct engineer operations.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference29 articles.

1. Mixed lubrication analysis of modified cycloidal gear used in the RV reducer;Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology,2016

2. On the RV-AC drive in robots,1995

3. Numerical solution to the elastohydrodynamic problem;Journal of Engineering Science,1959

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3