Clinically-derived oscillatory biomarker predicts optimal subthalamic stimulation for Parkinson’s disease

Author:

Rao Akshay TORCID,Lu Charles WORCID,Askari AsraORCID,Malaga Karlo AORCID,Chou Kelvin LORCID,Patil Parag GORCID

Abstract

Abstract Objective. Choosing the optimal electrode trajectory, stimulation location, and stimulation amplitude in subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson’s disease remains a time-consuming empirical effort. In this retrospective study, we derive a data-driven electrophysiological biomarker that predicts clinical DBS location and parameters, and we consolidate this information into a quantitative score that may facilitate an objective approach to STN DBS surgery and programming. Approach. Random-forest feature selection was applied to a dataset of 1046 microelectrode recordings (MERs) sites across 20 DBS implant trajectories to identify features of oscillatory activity that predict clinically programmed volumes of tissue activation (VTAs). A cross-validated classifier was used to retrospectively predict VTA regions from these features. Spatial convolution of probabilistic classifier outputs along MER trajectories produced a biomarker score that reflects the probability of localization within a clinically optimized VTA. Main results. Biomarker scores peaked within the VTA region and were significantly correlated with percent improvement in postoperative motor symptoms (Part III of the Movement Disorders Society revision of the Unified Parkinson Disease Rating Scale, R = 0.61, p = 0.004). Notably, the length of STN, a common criterion for trajectory selection, did not show similar correlation (R = −0.31, p = 0.18). These findings suggest that biomarker-based trajectory selection and programming may improve motor outcomes by 9 ± 3 percentage points (p = 0.047) in this dataset. Significance. A clinically defined electrophysiological biomarker not only predicts VTA size and location but also correlates well with motor outcomes. Use of this biomarker for trajectory selection and initial stimulation may potentially simplify STN DBS surgery and programming.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3