EEG-based brain–computer interfaces exploiting steady-state somatosensory-evoked potentials: a literature review

Author:

Petit JimmyORCID,Rouillard JoséORCID,Cabestaing FrançoisORCID

Abstract

Abstract A brain–computer interface (BCI) aims to derive commands from the user’s brain activity in order to relay them to an external device. To do so, it can either detect a spontaneous change in the mental state, in the so-called ‘active’ BCIs, or a transient or sustained change in the brain response to an external stimulation, in ‘reactive’ BCIs. In the latter, external stimuli are perceived by the user through a sensory channel, usually sight or hearing. When the stimulation is sustained and periodical, the brain response reaches an oscillatory steady-state that can be detected rather easily. We focus our attention on electroencephalography-based BCIs (EEG-based BCI) in which a periodical signal, either mechanical or electrical, stimulates the user skin. This type of stimulus elicits a steady-state response of the somatosensory system that can be detected in the recorded EEG. The oscillatory and phase-locked voltage component characterising this response is called a steady-state somatosensory-evoked potential (SSSEP). It has been shown that the amplitude of the SSSEP is modulated by specific mental tasks, for instance when the user focuses their attention or not to the somatosensory stimulation, allowing the translation of this variation into a command. Actually, SSSEP-based BCIs may benefit from straightforward analysis techniques of EEG signals, like reactive BCIs, while allowing self-paced interaction, like active BCIs. In this paper, we present a survey of scientific literature related to EEG-based BCI exploiting SSSEP. Firstly, we endeavour to describe the main characteristics of SSSEPs and the calibration techniques that allow the tuning of stimulation in order to maximise their amplitude. Secondly, we present the signal processing and data classification algorithms implemented by authors in order to elaborate commands in their SSSEP-based BCIs, as well as the classification performance that they evaluated on user experiments.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3