A static paradigm based on illusion-induced VEP for brain-computer interfaces

Author:

Ruxue LiORCID,Hu Honglin,Zhao XiORCID,Wang Zhenyu,Xu Guiying

Abstract

Abstract Objective. Visual evoked potentials (VEPs) have been commonly applied in brain-computer interfaces (BCIs) due to their satisfactory classification performance recently. However, most existing methods with flickering or oscillating stimuli will induce visual fatigue under long-term training, thus restricting the implementation of VEP-based BCIs. To address this issue, a novel paradigm adopting static motion illusion based on illusion-induced visual evoked potential is proposed for BCIs to enhance visual experience and practicality. Approach. This study explored the responses to baseline and illusion tasks including the rotating-tilted-lines illusion and rotating-snakes illusion. The distinguishable features were examined between different illusions by analyzing the event-related potentials and amplitude modulation of evoked oscillatory responses. Main results. The illusion stimuli elicited VEPs in an early time window encompassing a negative component (N1) from 110 to 200 ms and a positive component (P2) between 210 and 300 ms. Based on the feature analysis, a filter bank was designed to extract discriminative signals. The task-related component analysis was used to evaluate the binary classification task performance of the proposed method. Then the highest accuracy of 86.67% was achieved with a data length of 0.6 s. Significance. The results of this study demonstrate that the static motion illusion paradigm has the feasibility of implementation and is promising for VEP-based BCI applications.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Hybrid Brain–Computer Interface Combining the Illusion-Induced VEP and SSVEP;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3