A novel energy-motion model for continuous sEMG decoding: from muscle energy to motor pattern

Author:

Liu GangORCID,Wang Lu,Wang JingORCID

Abstract

Abstract At present, sEMG-based gesture recognition requires vast amounts of training data; otherwise it is limited to a few gestures. Objective. This paper presents a novel dynamic energy model that decodes continuous hand actions by training small amounts of sEMG data. Approach. The activation of forearm muscles can set the corresponding fingers in motion or state with movement trends. The moving fingers store kinetic energy, and the fingers with movement trends store potential energy. The kinetic energy and potential energy in each finger are dynamically allocated due to the adaptive-coupling mechanism of five-fingers in actual motion. Meanwhile, the sum of the two energies remains constant at a certain muscle activation. We regarded hand movements with the same direction of acceleration for five-finger as the same in energy mode and divided hand movements into ten energy modes. Independent component analysis and machine learning methods were used to model associations between sEMG signals and energy modes and expressed gestures by energy form adaptively. This theory imitates the self-adapting mechanism in actual tasks. Thus, ten healthy subjects were recruited, and three experiments mimicking activities of daily living were designed to evaluate the interface: (1) the expression of untrained gestures, (2) the decoding of the amount of single-finger energy, and (3) real-time control. Main results. (1) Participants completed the untrained hand movements (100/100, p < 0.0001). (2) The interface performed better than chance in the experiment where participants pricked balloons with a needle tip (779/1000, p < 0.0001). (3) In the experiment where participants punched a hole in the plasticine on the balloon, the success rate was over 95% (97.67 ± 5.04%, p < 0.01). Significance. The model can achieve continuous hand actions with speed or force information by training small amounts of sEMG data, which reduces learning task complexity.

Funder

Science and Technology Project of Shaanxi Province

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3