A compact stereotactic system for image-guided surgical intervention

Author:

Rusheen Aaron EORCID,Barath Abhijeet SORCID,Goyal AbhinavORCID,Barnett J Hudson,Gifford Benjamin T,Bennet Kevin EORCID,Blaha Charles DORCID,Goerss Stephan J,Oh YoonbaeORCID,Lee Kendall H

Abstract

Abstract Objective. Stereotactic technology enables fine navigation to small structures in the human body. While current stereotactic systems facilitate accurate targeting, they are mechanically cumbersome and limited in scope. Here, we hypothesized that a stereotactic system could be developed with a reduced footprint while maintaining broad targeting capabilities in order to improve versatility in frame placement location and surgical workflow. Approach. We designed a stereotactic system around the center-of-arc principle, with mechanical properties that would enable a compact design and ample targeting and trajectory maneuverability. To examine the opportunity for a low-cost rapidly-deployable system we developed two fabrication variants, one using three dimensional (3D)-printing and the other using conventional machining. Mechanical and image-guided accuracies were tested in phantom studies using magnetic resonance imaging (MRI) and computed tomography. Using human cadaver head specimens, we assessed the system’s surgical workflow and its ability to reliably and accurately implant electrodes in deep brain stimulation (DBS) surgery. Main results. We developed a small 7.7 × 5.4 cm2 device platform that rigidly mounts to curvilinear bone and supports the attachment of surgical instrumentation. Attachment of two surgical instruments, an imaging localizer and a compact targeting device, demonstrated successful MRI-guided intervention in phantom studies with a vector error of 1.79 ± 0.41 mm. Evaluation of the 3D-printed system for DBS surgery confirmed ease of device platform attachment and instrument functionality, as well as demonstrated a surgical targeting accuracy of 1.83 ± 0.15 mm. In addition, we found the surgical time to be 78.3 ± 5.4 min for bilateral electrode implantation. Significance. We developed a light and compact stereotactic system whose accuracy is on par with those used clinically. This technology is suitable for clinical translation and its flexibility in positioning will seamlessly expand the capabilities for stereotaxy to treat a wide range of conditions, both within neurosurgery and beyond.

Funder

The Grainger Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3