Designing and validating a robust adaptive neuromodulation algorithm for closed-loop control of brain states

Author:

Fang HaoORCID,Yang YuxiaoORCID

Abstract

Abstract Objective. Neuromodulation systems that use closed-loop brain stimulation to control brain states can provide new therapies for brain disorders. To date, closed-loop brain stimulation has largely used linear time-invariant controllers. However, nonlinear time-varying brain network dynamics and external disturbances can appear during real-time stimulation, collectively leading to real-time model uncertainty. Real-time model uncertainty can degrade the performance or even cause instability of time-invariant controllers. Three problems need to be resolved to enable accurate and stable control under model uncertainty. First, an adaptive controller is needed to track the model uncertainty. Second, the adaptive controller additionally needs to be robust to noise and disturbances. Third, theoretical analyses of stability and robustness are needed as prerequisites for stable operation of the controller in practical applications. Approach. We develop a robust adaptive neuromodulation algorithm that solves the above three problems. First, we develop a state-space brain network model that explicitly includes nonlinear terms of real-time model uncertainty and design an adaptive controller to track and cancel the model uncertainty. Second, to improve the robustness of the adaptive controller, we design two linear filters to increase steady-state control accuracy and reduce sensitivity to high-frequency noise and disturbances. Third, we conduct theoretical analyses to prove the stability of the neuromodulation algorithm and establish a trade-off between stability and robustness, which we further use to optimize the algorithm design. Finally, we validate the algorithm using comprehensive Monte Carlo simulations that span a broad range of model nonlinearity, uncertainty, and complexity. Main results. The robust adaptive neuromodulation algorithm accurately tracks various types of target brain state trajectories, enables stable and robust control, and significantly outperforms state-of-the-art neuromodulation algorithms. Significance. Our algorithm has implications for future designs of precise, stable, and robust closed-loop brain stimulation systems to treat brain disorders and facilitate brain functions.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3