Tracking the effects of propofol, sevoflurane and (S)-ketamine anesthesia using an unscented Kalman filter-based neural mass model

Author:

Liang ZhenhuORCID,Wang Dihuan,Jin Xing,Fan Luxin,Wen Xin,Wei Changwei,Li XiaoliORCID

Abstract

Abstract Objective. Neural mass model (NMM) has been widely used to investigate the neurophysiological mechanisms of anesthetic drugs induced general anesthesia (GA). However, whether the parameters of NMM could track the effects of anesthesia still unknown. Approach. We proposed using the cortical NMM (CNMM) to infer the potential neurophysiological mechanism of three different anesthetic drugs (i.e. propofol, sevoflurane, and (S)-ketamine) induced GA, and we employed unscented Kalman filter (UKF) to track any change in raw electroencephalography (rEEG) in frontal area during GA. We did this by estimating the parameters of population gain [i.e. excitatory/inhibitory postsynaptic potential (EPSP/IPSP, i.e. parameter A/B in CNMM) and the time constant rate of EPSP/IPSP (i.e. parameter a/b in CNMM). We compared the rEEG and simulated EEG (sEEG) from the perspective of spectrum, phase-amplitude coupling (PAC), and permutation entropy (PE). Main results. Under three estimated parameters (i.e. A, B, and a for propofol/sevoflurane or b for (S)-ketamine), the rEEG and sEEG had similar waveforms, time-frequency spectra, and PAC patterns during GA for the three drugs. The PE curves derived from rEEG and sEEG had high correlation coefficients (propofol: 0.97 ± 0.03, sevoflurane: 0.96 ± 0.03, (S)-ketamine: 0.98 ± 0.02) and coefficients of determination (R 2) (propofol: 0.86 ± 0.03, sevoflurane: 0.68 ± 0.30, (S)-ketamine: 0.70 ± 0.18). Except for parameter A for sevoflurane, the estimated parameters for each drug in CNMM can differentiate wakefulness and non-wakefulness states. Compared with the simulation of three estimated parameters, the UKF-based CNMM had lower tracking accuracy under the simulation of four estimated parameters (i.e. A, B, a, and b) for three drugs. Significance. The results demonstrate that a combination of CNMM and UKF could track the neural activities during GA. The EPSP/IPSP and their time constant rate can interpret the anesthetic drug’s effect on the brain, and can be used as a new index for depth of anesthesia monitoring.

Funder

central government guides local science and technology development foundation

National Natural Science Foundation of China

Scientific and Technological Innovation 2030

Natural Science Fund for Distinguished Young Scholars of Hebei Province of China

Hebei Province Science and Technology Support Plan

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3