Abstract
Abstract
Objective. Deep brain stimulation (DBS) programming for movement disorders requires systematic fine tuning of stimulation parameters to ameliorate tremor and other symptoms while avoiding side effects. DBS programming can be a time-consuming process and requires clinical expertise to assess response to DBS to optimize therapy for each patient. In this study, we describe and evaluate an automated, closed-loop, and patient-specific framework for DBS programming that measures tremor using a smartwatch and automatically changes DBS parameters based on the recommendations from a closed-loop optimization algorithm thus eliminating the need for an expert clinician. Approach. Bayesian optimization which is a sample-efficient global optimization method was used as the core of this DBS programming framework to adaptively learn each patient’s response to DBS and suggest the next best settings to be evaluated. Input from a clinician was used initially to define a maximum safe amplitude, but we also implemented ‘safe Bayesian optimization’ to automatically discover tolerable exploration boundaries. Main results. We tested the system in 15 patients (nine with Parkinson’s disease and six with essential tremor). Tremor suppression at best automated settings was statistically comparable to previously established clinical settings. The optimization algorithm converged after testing
15.1
±
0.7
settings when maximum safe exploration boundaries were predefined, and
17.7
±
4.9
when the algorithm itself determined safe exploration boundaries. Significance. We demonstrate that fully automated DBS programming framework for treatment of tremor is efficient and safe while providing outcomes comparable to that achieved by expert clinicians.
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献