Adaptive Deep Brain Stimulation in Parkinson’s Disease: A Delphi Consensus Study

Author:

Guidetti M.ORCID,Bocci T.,De Pedro Del Álamo M.,Deuschl G.,Fasano A.,Fernandez R. MartinezORCID,Gasca-Salas C.ORCID,Hamani C.,Krauss J.K.ORCID,Kühn A. A.,Limousin P.,Little S.,Lozano A.M.,Maiorana N.V.,Marceglia S.,Okun M.S.,Oliveri S.,Ostrem J. L.,Scelzo E.,Schnitzler A.,Starr P.A.,Temel Y.,Timmermann L.,Tinkhauser G.,Visser-Vandewalle V.,Volkmann J.,Priori A.

Abstract

ABSTRACTImportanceIf history teaches, as cardiac pacing moved from fixed-rate to on-demand delivery in in 80s of the last century, there are high probabilities that closed-loop and adaptive approaches will become, in the next decade, the natural evolution of conventional Deep Brain Stimulation (cDBS). However, while devices for aDBS are already available for clinical use, few data on their clinical application and technological limitations are available so far. In such scenario, gathering the opinion and expertise of leading investigators worldwide would boost and guide practice and research, thus grounding the clinical development of aDBS.ObservationsWe identified clinical and academically experienced DBS clinicians (n=21) to discuss the challenges related to aDBS. A 5-point Likert scale questionnaire along with a Delphi method was employed. 42 questions were submitted to the panel, half of them being related to technical aspects while the other half to clinical aspects of aDBS. Experts agreed that aDBS will become clinical practice in 10 years. In the present scenario, although the panel agreed that aDBS applications require skilled clinicians and that algorithms need to be further optimized to manage complex PD symptoms, consensus was reached on aDBS safety and its ability to provide a faster and more stable treatment response than cDBS, also for tremor-dominant Parkinson’s disease patients and for those with motor fluctuations and dyskinesias.Conclusions and RelevanceDespite the need of further research, the panel concluded that aDBS is safe, promises to be maximally effective in PD patients with motor fluctuation and dyskinesias and therefore will enter into the clinical practice in the next years, with further research focused on algorithms and markers for complex symptoms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3