Impact of neuroanatomical variations and electrode orientation on stimulus current in a device for migraine: a computational study

Author:

Salkim EnverORCID,Shiraz ArsamORCID,Demosthenous AndreasORCID

Abstract

Abstract Objective. Conventional treatment methods for migraine often have side effects. One treatment involves a wearable neuromodulator targeting frontal nerves. Studies based on this technique have shown limited efficacy and the existing setting can cause pain. These may be associated with neuroanatomical variations which lead to high levels of required stimulus current. The aim of this paper is to study the effect of such variations on the activation currents of the Cefaly neuromodulator. Also, using a different electrode orientation, the possibility of reducing activation current levels to avoid painful side-effects and improve efficacy, is explored. Approach. This paper investigates the effect of neuroanatomical variations and electrode orientation on the stimulus current thresholds using a computational hybrid model involving a volume conductor and an advanced nerve model. Ten human head models are developed considering statistical variations of key neuroanatomical features, to model a representative population. Main results. By simulating the required stimulus current level in the head models, it is shown that neuroanatomical variations have a significant impact on the outcome, which is not solely a function of one specific neuroanatomical feature. The stimulus current thresholds based on the conventional Cefaly system vary from 4.4 mA to 25.1 mA across all head models. By altering the electrode orientation to align with the nerve branches, the stimulus current thresholds are substantially reduced to between 0.28 mA and 15 mA, reducing current density near pain-sensitive structures which may lead to a higher level of patient acceptance, further improving the efficacy. Significance. Computational modeling based on statistically valid neuroanatomical parameters, covering a representative adult population, offers a powerful tool for quantitative comparison of the effect of the position of stimulating electrodes which is otherwise not possible in clinical studies.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3