Human Head Transcranial Magnetic Stimulation Using Finite Element Method

Author:

Salkım Enver1ORCID,Abut Tayfun2ORCID

Affiliation:

1. Mus Alparslan University

2. Muş Alparslan Üniversitesi

Abstract

Transcranial magnetic stimulation (TMS) is a wearable neuromodulation technique. It is approved for several therapies for various neurological disorders, including major depressive disorder, traumatic brain injury, Parkinson’s disease, and post-traumatic stress disorder. This method became an alternative neuromodulation technique for such brain-related disorders. However, it has shown significant improvement in this alternative approach. Studies based on this technique have shown limited efficacy. They might be associated with current levels, poor coil locality, optimal coil size, and neuromodulator settings. It has been shown in this research that coil heating is related to higher levels of current. Thus, it is required to analyze the impact of the current levels on the induced magnetic distribution to define the optimal current range for the TMS coils. It is not feasible to investigate this research with experimental tests and analytic methods. Alternatively, using an advanced computational model of the coils and accounting for different human head anatomical layers, coil current capacity can be optimized based on finite element magnetic field distribution. This paper aims to investigate the impact of the coil current levels on the induced magnetic field distribution. The current capacity of the coils can be optimized based on the required magnetic field. In this way, the overheating may be reduced and may result in increased efficacy. As a proof-of-concept, a prototype coil and multi-layered geometrical human head models were generated using geometric shapes. The fundamental human head tissue layers were generated based on their average thickness. The model was simulated based on a finite element magnetic simulation using appropriate boundary conditions and neuromodulator settings. The various coil current levels were applied to analyze the outcome. The models were simulated, and the results were recorded based on these current levels. Results showed that there is a direct relation between applied current levels and induced magnetic flux density in the region of interest.

Publisher

Kocaeli Journal of Science and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3