Modeling transcranial magnetic stimulation coil with magnetic cores

Author:

Makaroff Sergey NORCID,Nguyen HieuORCID,Meng Qinglei,Lu Hanbing,Nummenmaa Aapo R,Deng Zhi-DeORCID

Abstract

Abstract Objective. Accurate modeling of transcranial magnetic stimulation (TMS) coils with the magnetic core is largely an open problem since commercial (quasi) magnetostatic solvers do not output specific field characteristics (e.g. induced electric field) and have difficulties when incorporating realistic head models. Many open-source TMS softwares do not include magnetic cores into consideration. This present study reports an algorithm for modeling TMS coils with a (nonlinear) magnetic core and validates the algorithm through comparison with finite-element method simulations and experiments. Approach. The algorithm uses the boundary element fast multipole method applied to all facets of a tetrahedral core mesh for a single-state solution and the successive substitution method for nonlinear convergence of the subsequent core states. The algorithm also outputs coil inductances, with or without magnetic cores. The coil–core combination is solved only once i.e. before incorporating the head model. The resulting primary TMS electric field is proportional to the total vector potential in the quasistatic approximation; it therefore also employs the precomputed core magnetization. Main results. The solver demonstrates excellent convergence for typical TMS field strengths and for analytical BH approximations of experimental magnetization curves such as Froelich’s equation or an arctangent equation. Typical execution times are 1–3 min on a common multicore workstation. For a simple test case of a cylindrical core within a one-turn coil, our solver computed the small-signal inductance nearly identical to that from ANSYS Maxwell. For a multiturn rodent TMS coil with a core, the modeled inductance matched the experimental measured value to within 5%. Significance. Incorporating magnetic core in TMS coil design has advantages of field shaping and energy efficiency. Our software package can facilitate model-informed design of more efficiency TMS systems and guide selection of core material. These models can also inform dosing with existing clinical TMS systems that use magnetic cores.

Funder

National Institute of Mental Health

National Institute of Drug Abuse

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference61 articles.

1. Apparatus and method for transcranial magnetic brain stimulation, including the treatment of depression and the localization and characterization of speech arrest;Epstein,2002

2. Magnetic nerve stimulation seat device;Davey,2002

3. The development and modeling of devices and paradigms for transcranial magnetic stimulation;Goetz;Int. Rev. Psychiatry,2017

4. News release details,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3