Enabling Electric Field Model of Microscopically Realistic Brain

Author:

Qi Zhen,Noetscher Gregory M.ORCID,Miles Alton,Weise Konstantin,Knösche Thomas R.,Cadman Cameron R.,Potashinsky Alina R.,Liu Kelu,Wartman William A.,Nunez Ponasso GuillermoORCID,Bikson Marom,Lu Hanbing,Deng Zhi-DeORCID,Nummenmaa Aapo R.,Makaroff Sergey N.

Abstract

AbstractAcross all domains of brain stimulation (neuromodulation), conventional analysis of neuron activation involves two discrete steps: i) prediction of macroscopic electric field, ignoring presence of cells and; ii) prediction of cell activation from tissue electric fields. The first step assumes that current flow is not distorted by the dense tortuous network of cell structures. The deficiencies of this assumption have long been recognized, but – except for trivial geometries – ignored, because it presented intractable computation hurdles.This study introduces a novel approach for analyzing electric fields within a microscopically realistic brain volume. Our pipeline overcomes the technical intractability that prevented such analysis while also showing significant implications for brain stimulation. Contrary to the standard finite element method (FEM), we suggest using a nested iterative boundary element method (BEM) coupled with the fast multipole method (FMM). This approach allows for solving problems with multiple length scales more efficiently. A target application is a subvolume of the L2/3 P36 mouse primary visual cortex containing approximately 400 detailed densely packed neuronal cells at a resolution of 100 nm, which is obtained from scanning electron microscopy data.Our immediate result is a reduction of the stimulation field strength necessary for neuron activation by a factor of 0.85-0.55 (by 15%-45%) as compared to macroscopic predictions. This is in line with modern experimental data stating that existing macroscopic theories substantially overestimate electric field levels necessary for brain stimulation.Significance statementThis study introduces a principally new method for modeling brain stimulation within a relatively large yet microscopically realistic brain volume, including hundreds or thousands of electrically coupled closely spaced neurons and blood microcapillaries. It addresses a limitation present across decades of macroscopic-level electromagnetic models for brain stimulation and begins to bridge a long-recognized gap in our analysis of bioelectricity as applied to brain stimulation and electrophysiology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3