Computational modeling of endovascular peripheral nerve stimulation using a stent-mounted electrode array

Author:

Liu JingYangORCID,Grayden David B,Keast Janet R,John Sam E

Abstract

Abstract Objective: Endovascular neuromodulation has attracted substantial interest in recent years as a minimally invasive approach to treat neurological disorders. In this study, we investigated with a computational model the feasibility of stimulating peripheral nerves with an endovascular stent-mounted electrode array. Approach: Anatomically realistic FEM models were constructed for the pudendal and vagal neurovascular bundles. The electromagnetic fields generated from electrical stimuli was computed using Sim4Life NEURON models to predict dynamic axonal responses. Main results: The models predict that the stimulation thresholds of the endovascular stent-electrode array configurations tested are comparable to that of ring electrodes and are dependent on the inter-electrode distance and orientation of the device. Arranging multiple electrodes along the longitudinal axis of the nerve lowers surface charge density without sacrificing axon recruitment, whereas arranging electrodes along the circumference of the blood vessel reduces the risk of misalignment but lowers axon recruitment. Significance: Overall, this study predicts that the endovascular stent-electrode array is a feasible stimulation option for peripheral nerves, and the electrode array can be flexibly optimized to achieve the lowest stimulation threshold.

Funder

US Defense Advanced Research Projects Agency

National Health and Medical Research Council of Australia

Australian Government

The University of Melbourne

CDMRP

US Department of Defence, Epilepsy Research Program

Office of Naval Research

Microsystems Technology Office

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3