Confused or not: decoding brain activity and recognizing confusion in reasoning learning using EEG

Author:

Xu TaoORCID,Wang JiabaoORCID,Zhang GaotianORCID,Zhang LingORCID,Zhou YunORCID

Abstract

Abstract Objective. Confusion is the primary epistemic emotion in the learning process, influencing students’ engagement and whether they become frustrated or bored. However, research on confusion in learning is still in its early stages, and there is a need to better understand how to recognize it and what electroencephalography (EEG) signals indicate its occurrence. The present work investigates confusion during reasoning learning using EEG, and aims to fill this gap with a multidisciplinary approach combining educational psychology, neuroscience and computer science. Approach. First, we design an experiment to actively and accurately induce confusion in reasoning. Second, we propose a subjective and objective joint labeling technique to address the label noise issue. Third, to confirm that the confused state can be distinguished from the non-confused state, we compare and analyze the mean band power of confused and unconfused states across five typical bands. Finally, we present an EEG database for confusion analysis, together with benchmark results from conventional (Naive Bayes, Support Vector Machine, Random Forest, and Artificial Neural Network) and end-to-end (Long Short Term Memory, Residual Network, and EEGNet) machine learning methods. Main results. Findings revealed: 1. Significant differences in the power of delta, theta, alpha, beta and lower gamma between confused and non-confused conditions; 2. A higher attentional and cognitive load when participants were confused; and 3. The Random Forest algorithm with time-domain features achieved a high accuracy/F1 score (88.06%/0.88 for the subject-dependent approach and 84.43%/0.84 for the subject-independent approach) in the binary classification of the confused and non-confused states. Significance. The study advances our understanding of confusion and provides practical insights for recognizing and analyzing it in the learning process. It extends existing theories on the differences between confused and non-confused states during learning and contributes to the cognitive-affective model. The research enables researchers, educators, and practitioners to monitor confusion, develop adaptive systems, and test recognition approaches.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Barefoot walking improves cognitive ability in adolescents;The Korean Journal of Physiology & Pharmacology;2024-07-01

2. Event-Triggered Pseudo Supervised Meta Learning for Susceptibility Assessment of Acute Mountain Sickness;2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2024-06-07

3. FetchEEG: a hybrid approach combining feature extraction and temporal-channel joint attention for EEG-based emotion classification;Journal of Neural Engineering;2024-05-15

4. EEG Technology Interface: Synchronous Online Education Assistance System;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

5. A Systematic Review of Electroencephalography-Based Emotion Recognition of Confusion Using Artificial Intelligence;Signals;2024-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3