Abstract
Abstract
Objective. The electroencephalogram (EEG) is one of the most important brain-imaging tools. The few-channel EEG is more suitable and affordable for practical use as a wearable device. Removing artifacts from collected EEGs is a prerequisite for accurately interpreting brain function and state. Previous studies proposed methods combining signal decomposition with the blind source separation (BSS) algorithms, but most of them used threshold-based criteria for artifact rejection, resulting in a lack of effectiveness in removing specific artifacts and the excessive suppression of brain activities. In this study, we proposed an outlier detection-based method for artifact removal under the few-channel condition. Approach. The underlying components (sources) were extracted using the decomposition-BSS schema. Based on our assumptions that in the feature space, the artifact-related components are dispersed, while the components related to brain activities are closely distributed, the artifact-related components were identified and rejected using one-class support vector machine. The assumptions were validated by visualizing the distribution of clusters of components. Main results. In quantitative analyses with semisimulated data, the proposed method outperformed the threshold-based methods for various artifacts, including muscle artifact, ocular artifact, and power line noise. With a real dataset and an event-related potential dataset, the proposed method demonstrated good performance in real-life situations. Significance. This study provided a fully data-driven and adaptive method for removing various artifacts in a single process without excessive suppression of brain activities.
Funder
National Natural Science Foundation of China
National Defense Basic Scientific Research Program of China
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献