Air pollution impact on forecasting electricity demand utilizing CNN-PSO hyper-parameter optimization

Author:

Birdal Ramiz GorkemORCID

Abstract

Abstract Electricity consumption is expected to increase considerably in the next few years, so forecasting and planning will become more important. A new method of forecasting electricity loads based on air pollution is presented in this paper. Air pollution indirect effects are not incorporated in current evaluations since they rely primarily on weather conditions, historical load data, and seasonality. The accuracy of electricity load forecasting improved by incorporating air pollution data and its potential effects, especially in regions where air quality heavily impacts energy consumption and generation patterns. This robust prediction model is capable of capturing the complex interactions between air pollution and electricity load by integrating innovative environmental factors with historical load data, weather forecasts, and other features. As part of the second contribution, we use metaheuristic algorithms to optimize hyper parameters, which provide advantages such as exploration capability, global optimization, robustness, parallelization, and adaptability making them valuable tools to improve machine learning models’ performance and efficiency. The study found that the correlation coefficient (R) between predicted and real electricity demand and supply was high, at 0.9911. Beyond that this approach reduces MAPE by up to 19.5% when CNN and particle swarm optimization are combined with utilizing innovative air pollution variables. As a result, the optimization results were robust compared to state-of-the-art results based on statistical metrics such as RMSE and MAPE. Lastly, we emphasize the importance of factoring in air pollution effects when forecasting and managing electricity loads; future research directions include developing integrated modeling frameworks that reflect the dynamic interaction between air quality, energy consumption, and renewable energy generation.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3