Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables

Author:

Chapagain Kamal,Kittipiyakul Somsak

Abstract

The quality of short-term electricity demand forecasting is essential for the energy market players for operation and trading activities. Electricity demand is significantly affected by non-linear factors, such as climatic conditions, calendar components and seasonal behavior, which have been widely reported in the literature. This paper considers parsimonious forecasting models to explain the importance of atmospheric variables for hourly electricity demand forecasting. Many researchers include temperature as a major weather component. If temperature is included in a model, other weather components, such as relative humidity and wind speed, are considered as less effective. However, several papers mention that there is a significant impact of atmospheric variables on electricity demand. Therefore, the main purpose of this study is to investigate the impact of the following atmospheric variables: rainfall, relative humidity, wind speed, solar radiation, and cloud cover to improve the forecasting accuracy. We construct three different multiple linear models (Model A, Model B, and Model C) including the auto-regressive moving average with exogenous variables (ARMAX) with the mentioned exogenous weather variables to compare the performances for Hokkaido Prefecture, Japan. The Bayesian approach is applied to estimate the weight of each variable with Gibbs sampling to approximate the estimation of the coefficients. The overall mean absolute percentage error (MAPE) performances of Model A, Model B, and Model C are estimated as 2.43%, 1.98% and 1.72%, respectively. This means that the accuracy is improved by 13.4% by including rainfall, snowfall, solar radiation, wind speed, relative humidity, and cloud cover data. The results of the statistical test indicate that these atmospheric variables and the improvement in accuracy are statistically significant in most of the hours. More specifically, they are significant during highly fluctuating and peak hours.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3