Drainage reduces the resilience of a boreal peatland

Author:

Harris Lorna IORCID,Roulet Nigel TORCID,Moore Tim RORCID

Abstract

Abstract Drier conditions caused by drainage for infrastructure development, or associated with global climate warming, may test the resilience of carbon-rich northern peatlands. Feedbacks among biological and hydrological processes maintain the long-term stability of peatlands, but if hydrological thresholds are passed, these feedbacks may be weakened, causing a shift in ecosystem state and potentially large losses of carbon (C). To determine peatland response to hydrological change, we examined the structure (vegetation composition and hydrology) and biogeochemical function (carbon dioxide exchange) of a pristine bog and a bog subject to ∼7 years localised drainage (caused by regional groundwater drawdown due to mine dewatering) in the Hudson Bay Lowland, Canada. Water tables at the drained bog were ∼1 m below the hummock surface at the time of study compared to ∼0.3 m at the pristine bog. For hummocks and intermediate microforms at the drained bog, plant production was significantly less than at the pristine bog, most likely due to small changes in vegetation structure (reduced Sphagnum cover and smaller shrub leaf:stem ratios) caused by deeper water tables and significantly reduced moisture content of surface peat. Despite these changes in vegetation and hydrology, net ecosystem production (NEP) remained positive (C sink) for these microforms at the drained bog. Dry pools with mostly bare peat at the drained bog had negative NEP (C source to atmosphere), in stark contrast to Sphagnum- and sedge-dominated pools at the pristine bog with small but positive NEP. Our study shows that dry pools now occupy an unstable state, but the hydrological thresholds for a shift in ecosystem state have not yet been reached for hummocks and intermediate microforms at the drained bog. However, weak or no relationships between water table depth, peat surface moisture content, and plant production for these microforms at the drained bog, suggest that drainage has weakened the hydrological feedbacks regulating peat production, causing peat accumulation to slow. If drier conditions prevail, this reduced resilience increases the potential for a shift in ecosystem state and raises the risk of large C loss due to continued decomposition of deeper peat in oxic conditions, and wildfire.

Funder

Natural Sciences and Engineering Research Council of Canada

W. Garfield Weston Foundation

Publisher

IOP Publishing

Reference83 articles.

1. Fitting linear mixed-effects models using lme4;Bates;Journal of Statistical Software,2015

2. Nonlinear dynamics of peatlands and potential feedbacks on the climate system;Belyea;Carbon Cycling in Northern Peatlands - Geophysical Monograph Series,2009

3. Beyond ‘the limits to peat bog growth’: cross-scale feedback in peatland development;Belyea;Ecological Monographs,2006

4. Feedback control of the rate of peat formation;Belyea;Proceedings: Biological Sciences,2001

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3