Pressure-dependent electronic, optical, and mechanical properties of antiperovskite X3NP (X = Ca, Mg): A first-principles study

Author:

Feng Chunbao,Wu Changhe,Luo Xin,Hu Tao,Chen Fanchuan,Li Shichang,Duan Shengnan,Hou Wenjie,Li Dengfeng,Tang Gang,Zhang Gang

Abstract

Abstract Hydrostatic pressure provides an efficient way to tune and optimize the properties of solid materials without changing their composition. In this work, we investigate the electronic, optical, and mechanical properties of antiperovskite X3NP (X2+ = Ca, Mg) upon compression by first-principles calculations. Our results reveal that the system is anisotropic, and the lattice constant a of X3NP exhibits the fastest rate of decrease upon compression among the three directions, which is different from the typical Pnma phase of halide and chalcogenide perovskites. Meanwhile, Ca3NP has higher compressibility than Mg3NP due to its small bulk modulus. The electronic and optical properties of Mg3NP show small fluctuations upon compression, but those of Ca3NP are more sensitive to pressure due to its higher compressibility and lower unoccupied 3d orbital energy. For example, the band gap, lattice dielectric constant, and exciton binding energy of Ca3NP decrease rapidly as the pressure increases. In addition, the increase in pressure significantly improves the optical absorption and theoretical conversion efficiency of Ca3NP. Finally, the mechanical properties of X3NP are also increased upon compression due to the reduction in bond length, while inducing a brittle-to-ductile transition. Our research provides theoretical guidance and insights for future experimental tuning of the physical properties of antiperovskite semiconductors by pressure.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3