Author:
Sun Fei,Peng Yi,Zhao Guoqiang,Wang Xiancheng,Deng Zheng,Jin Changqing
Abstract
Abstract
Applying pressure has been evidenced as an effective method to control the properties of semiconductors, owing to its capability to modify the band configuration around Fermi energy. Correspondingly, structural evolutions under external pressures are required to analyze the mechanisms. Herein high-pressure structure of a magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2 is studied with combination of in-situ synchrotron X-ray diffractions and diamond anvil cells. The materials become ferromagnetic with Curie temperature of 105 K after further 20% K doping. The title material undergoes an isostructural phase transition at around 19 GPa. Below the transition pressure, it is remarkable to find lengthening of Zn/Mn−As bond within Zn/MnAs layers, since chemical bonds are generally shortened with applying pressures. Accompanied with the bond stretch, interlayer As−As distances become shorter and the As−As dimers form after the phase transition. With further compression, Zn/Mn−As bond becomes shortened due to the recovery of isotropic compression on the Zn/MnAs layers.