Abstract
Abstract
Cell viscoelasticity provides mechanistic insights into fundamental biological functions and may be used in many applications. Using atomic force microscopy in time and frequency domains, we find a peculiar behavior in the viscoelastic relaxation of L929 mouse fibroblasts that may help understand how cells perceive and adapt to distinct extracellular environments. They are stiffer when cultured over polyacrylamide gels (20-350 kPa) than over glass-bottom Petri dishes. The stiffness enhancement of cells over gels is attributed to a significant increase in the low-frequency storage shear moduli compared to the loss moduli, indicating that gels induce a remodeling of cytoskeleton components that store elastic energy. Morphological alterations are then expressed by the fractal dimension measured on confocal images of the f-actin cytoskeleton. We show a direct scaling between the fractal dimension and the substrate’s rigidity.
Funder
Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Polymers and Plastics,Materials Science (miscellaneous),Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献