Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications

Author:

Haroun Ahmed,Le Xianhao,Gao Shan,Dong Bowei,He Tianyiyi,Zhang Zixuan,Wen Feng,Xu Siyu,Lee ChengkuoORCID

Abstract

Abstract Self-sustainable sensing systems composed of micro/nano sensors and nano-energy harvesters contribute significantly to developing the internet of things (IoT) systems. As one of the most promising IoT applications, smart home relies on implementing wireless sensor networks with miniaturized and multi-functional sensors, and distributed, reliable, and sustainable power sources, namely energy harvesters with a variety of conversion mechanisms. To extend the capabilities of IoT in the smart home, a technology fusion of IoT and artificial intelligence (AI), called the artificial intelligence of things (AIoT), enables the detection, analysis, and decision-making functions with the aids of machine learning assisted algorithms to form a smart home based intelligent system. In this review, we introduce the conventional rigid microelectromechanical system (MEMS) based micro/nano sensors and energy harvesters, followed by presenting the advances in the wearable counterparts for better human interactions. We then discuss the viable integration approaches for micro/nano sensors and energy harvesters to form self-sustainable IoT systems. Whereafter, we emphasize the recent development of AIoT based systems and the corresponding applications enabled by the machine learning algorithms. Smart home based healthcare technology enabled by the integrated multi-functional sensing platform and bioelectronic medicine is also presented as an important future direction, as well as wearable photonics sensing system as a complement to the wearable electronics sensing system.

Funder

Reconfigurable data center optical interconnects using fast nanophotonic MEMS waveguide switches

Chip-Scale MEMS Micro-Spectrometer for Monitoring Harsh Industrial Gases

Publisher

IOP Publishing

Subject

General Medicine

Reference345 articles.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3