Cold welding assisted self-healing of fractured ultrathin Au nanowires

Author:

Li PeifengORCID,Cao KeORCID,Gao Libo,Liao WeibingORCID,Liu JiabinORCID,Sun Xu,Wang Hongtao,Rao Feng,Lu YangORCID

Abstract

Abstract In nano-electronic field, cold welding is a simple novel method to join ultrathin noble metal nanowires (NWs) without introducing extra energy and defects. In previous works, it always occurred between ultrathin noble metal NWs, tensile fracture parts of a single NW, or a NW formation from nanoparticles. However, some external force is still needed to drive the materials as close to each other as possible before the process. Here, we proposed a new method to achieve cold welding without introducing artificial loadings. The bending fractured ultrathin gold (Au) NW can be self-healed assisted by cold welding during the removal of the tungsten (W) tip by in situ transmission electron microscope (TEM). A new interface with lattice mismatch formed in the welding zone after multiple periodic cycles, leaving an angle between the two rebonded fracture parts. Furthermore, the cold welding assisted self-healing of the bending fractured ultrathin Au NW and atom evolutions were also confirmed by molecular dynamics (MD) simulations. The successful implementation of cold welding makes the self-healing come true when the ultrathin Au NW fractures under the unexpected vibrations.

Funder

Fundamental Research Funds for the Central Universities

Research Grants Council (RGC) of Hong Kong under GRF project

Natural Science Foundation of Guangdong Province

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3