Deciphering the mechanism of hafnium oxide nanoparticles perturbation in the bio-physiological microenvironment of catalase

Author:

Ahmad FarooqORCID,Muhmood TahirORCID,Mahmood Asif

Abstract

Abstract Nanoparticles (NPs) are extensively being used in state-of-the-art nano-based therapies, modern electronics, and consumer products, so can be released into the environment with enhancement interaction with humans. Hence, the exposures to these multifunctional NPs lead to changes in protein structure and functionality, raising serious health issues. This study thoroughly investigated the interaction and adsorption of catalase (CAT) with HfO2-NPs by circular dichroism (CD), Fourier transform infrared (FTIR), absorption, and fluorescence spectroscopic techniques. The results indicate that HfO2 NPs cause fluorescence quenching in CAT by a static quenching mechanism. The negative values of Vant Hoff thermodynamic expressions (ΔH o , ΔS o , and ΔG o ) corroborate the spontaneity and exothermic nature of static quenching driven by van der Waals forces and hydrogen bonding. Also, FTIR, UV-CD, and UV–visible spectroscopy techniques confirmed that HfO2 NPs binding could induce microenvironment perturbations leading to secondary and tertiary conformation changes in CAT. Furthermore, synchronous fluorescence spectroscopy confirmed the significant changes in the microenvironment around tryptophan (Trp) residue caused by HfO2 NPs. The time depending denaturing of CAT biochemistry through HfO2-NPs was investigated by assaying catalase activity elucidates the potential toxic action of HfO2-NPs at the macromolecular level. Briefly, this provides an empathetic knowledge of the nanotoxicity and likely health effects of HfO2 NPs exposure.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the effect of surfactants on the interactions of manganese dioxide nanoparticles with biomolecules;Journal of Biomolecular Structure and Dynamics;2023-11-25

2. Exploring the interaction of calycosin with cyclin D1 protein as a regulator of cell cycle progression in lung cancer cells;Arabian Journal of Chemistry;2022-05

3. Study the effect of zinc oxide nanoparticles and dianthus caryophyllus L. extract on streptococcus mutans isolated from human dental caries in vitro;PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH IN PURE AND APPLIED SCIENCE (ICARPAS2021): Third Annual Conference of Al-Muthanna University/College of Science;2022

4. In vitro study of the effect of zinc oxide nanoparticles on Streptococcus mutans isolated from human dental caries;Journal of Physics: Conference Series;2021-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3