Three-dimensional SnO2 nanoparticles synthesized by joule heating as anode materials for lithium ion batteries

Author:

Jung Woo-Bin,Hong Yu Jin,Yoon Jeesoo,Moon San,Choi Sungho,Kim Do YoubORCID,Suk Jungdon,Chae Oh B.,Wu Mihye,Jung Hee-TaeORCID

Abstract

Abstract Tin dioxide (SnO2) is a promising material for use as anodes because of its high theoretical capacity (1,494 mAh g−1). However, a critical limitation is the large change in volume during repeated cycling by pulverization of SnO2, which results in capacity fading. In this study, we enhanced cycle life and reduced capacity fading by introducing the use of three-dimensional SnO2 nanoparticles on carbon nanofibers (CNFs) as an anode material, which is fabricated by simple carbothermal shock through the Joule heating method. Our observations show that the SnO2 nanoparticles are about 50 nm in diameter and are uniformly distributed on CNF, and that the strong connections between SnO2 nanoparticles and CNF are sustained even after repeated cycling. This structural advantage provides high reversible capacity and enhanced cycle performance for over 100 cycles. This study provides insight into the fabrication of anode materials that have strong electric connections between active materials and conductive materials due to the Joule heating method for high-performance lithium ion batteries.

Funder

National Research Foundation of Korea

LG energy solution-KAIST Frontier Research Laboratory

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3