Abstract
Abstract
Rational design and construction of self-supporting anodes with high energy density is an essential part of research in the field of lithium-ion batteries. Tin oxide (SnO2) is restricted in application as a prospective high energy density anode due to inherent low conductivity and huge volume expansion of the charge/discharge process. A new strategy that combines high energy ball milling and nonsolvent induced phase separation (NIPS) method was employed to synthesize self-supporting electrodes in which porous SnO2 was encapsulated in a three-dimensional hierarchical porous copper (Cu) shell structure (3DHPSnO2@Cu). This unique structure was constructed due to the different binding energy of the alloy with oxygen, which are −0.91 eV for Cu41Sn11 and −1.17 eV for Cu5.6Sn according to the density functional theory calculation. 3DHPSnO2@Cu electrodes exhibited excellent discharge capacity with an initial reversible capacity of 4.35 mAh cm−2 and a reversible capacity of 3.13 mAh cm−2 after 300 cycles at a current density of 1.4 mA cm−2. It is attributed that the porous Cu shell encapsulated with porous SnO2 provides buffer volume. Among them, the SnO2-Cu-SnO2 interface increases the electrical conductivity and the porous structure provides ion transport channels. This strategy opens a new pathway in the development of self-supporting electrode materials with high energy density.
Funder
National Natural Science Foundation of China
Qing Lan Project of Jiangsu Province
Science and Technology Projects of Suzhou City
Subject
Materials Chemistry,General Energy,Materials Science (miscellaneous)