Tailoring hierarchical porous core–shell SnO2@Cu upon Cu–Sn alloys through oxygen binding energy difference for high energy density lithium-ion storage

Author:

Yang HuanORCID,Zhang ZhijiaORCID,Zhao Yuwen,Chen Yuefang,Sun Qi,Zhang Mengmeng,Zhang Yifang,Yu Zhenyang,Li Chunsheng,Sun Yan,Jiang Yong

Abstract

Abstract Rational design and construction of self-supporting anodes with high energy density is an essential part of research in the field of lithium-ion batteries. Tin oxide (SnO2) is restricted in application as a prospective high energy density anode due to inherent low conductivity and huge volume expansion of the charge/discharge process. A new strategy that combines high energy ball milling and nonsolvent induced phase separation (NIPS) method was employed to synthesize self-supporting electrodes in which porous SnO2 was encapsulated in a three-dimensional hierarchical porous copper (Cu) shell structure (3DHPSnO2@Cu). This unique structure was constructed due to the different binding energy of the alloy with oxygen, which are −0.91 eV for Cu41Sn11 and −1.17 eV for Cu5.6Sn according to the density functional theory calculation. 3DHPSnO2@Cu electrodes exhibited excellent discharge capacity with an initial reversible capacity of 4.35 mAh cm−2 and a reversible capacity of 3.13 mAh cm−2 after 300 cycles at a current density of 1.4 mA cm−2. It is attributed that the porous Cu shell encapsulated with porous SnO2 provides buffer volume. Among them, the SnO2-Cu-SnO2 interface increases the electrical conductivity and the porous structure provides ion transport channels. This strategy opens a new pathway in the development of self-supporting electrode materials with high energy density.

Funder

National Natural Science Foundation of China

Qing Lan Project of Jiangsu Province

Science and Technology Projects of Suzhou City

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3