Abstract
Abstract
Semiconductor nanowire ordered arrays represent a class of bi-dimensional photonic crystals that can be engineered to obtain functional metamaterials. Here is proposed a novel approach, based on a particle swarm optimization algorithm, for using such a photonic crystal concept to design a semiconductor nanowire-based two-dimensional diffraction grating able to guarantee an in-plane coupling for light trapping. The method takes into account the experimental constraints associated to the bottom-up growth of nanowire arrays, by processing as input dataset all relevant geometrical and morphological features of the array, and returns as output the optimised set of parameters according to the desired electromagnetic functionality of the metamaterial. A case of study based on an array of tapered GaAs-AlGaAs core–shell nanowire heterostructures is discussed.
Funder
Ministero dell'Università e della Ricerca
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献