Advances in mechanical characterization of 1D and 2D nanomaterials: progress and prospects

Author:

Pantano Maria FORCID,Kuljanishvili IrmaORCID

Abstract

Abstract Last several decades have sparked a tremendous interest in mechanical properties of low dimensional systems specifically 1D and 2D nanomaterials, in large, due to their remarkable behavior and potential to possess unique and customizable physical properties, which have encouraged the fabrication of new structures to be tuned and utilized for targeted applications. In this critical review we discuss examples that represent evolution of the mechanical characterization techniques developed for 1D and 2D nanomaterials, with special emphasis on specimen fabrication and manipulation, and the different strategies, tools and metrologies, employed for precise positioning and accurate measurements of materials’ strength, elastic modulus, fracture toughness as well as analysis of failure modes. We focus separately on techniques for the mechanical characterization of 1D and 2D nanomaterials and categorize those methods into top-down and bottom-up approaches. Finally, we discuss advantages and some drawbacks in most common methodologies used for 1D and 2D specimen testing and outline future possibilities and potential paths that could boost the development of more universal approaches for technologically viable solutions which would allow for more streamlined and standardized mechanical testing protocols to be developed and implemented.

Funder

MFP acknowledges the support from the Italian Ministry of Education, University and Research(MIUR) under the “Departments of Excellence

Saint Louis University seed funds.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3